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SUMMARY M ///_______,.2_,

The use of digital computers in performing non-numeric operations is
rendered possible by the evolution of new computer langusges such as Formac.
In this paper the problem of using a digital computer to derive the equations
of motion of a particle in a general orthogonal curvilinear coordinate system
is considered. Since this operation involves a formulation in terms of first
and second order differential coefficients, it provides a good demonstration
of a computer's capability to do non-numeric work, and to assist in the
formulation process which normally precedes the numerical data processing
stage. Mcreover, this particular problem serves to illustrate the advantages
of the mathematical techniques employed. Because of the invariant nature of
the formulation with respect to coordinate transformations, these techniques
can be used to‘reduce complicated formulation problems to routine computer
operations. In applying this procedure, the user need only know the coordi-
nate transformation equations relating the curvilinear coordinates to an
orthogonal Cartesian set. A computer program has been written to implement
these ideas. When this program is used and the coordinate transformation
equations are supplied as input, the computer will output the equations of
motion. The equations of motion obtained will be relative to the curvilinear

coordinate system specified by the coordinate transformation equations used




as input. Results are presented for the following curvilinear coordinate
systems: sphericsl polar, cylindrical polar, oblate sphercidal and prolate
spheroidal.
INTRODUCTION

Research undertaken with the object of promoting man-computer inter-
action has directed attention to the use of computers for non-numeric
nse. 1o particulsr, lhe possibiiity of using digital computers to
derive the equations of motion and of mathematical physics in a general
curvilinear coordinate system has been explored. Traditionally, these
functions were considered to be the exclusive preserve of the scientist.
Nevertheless, as is shown in this paper, digital computers can participate
in the performance of such tasks. However, if the extensive logic and stor-
age capabilities of these computers are to be used to full advantage, a
departure from conventional techniques of formulation may be necessary. The
extent to which conventional methods should be modified to enable digital

computers to participste effectively in non-numeric operations has been

exanined. Tor example, when conventional methods are used, the form which the

equations of motion and of mathematiczl physics assumes depends on the
coordinate system used to describe the problem. This dependence, which is
due to the practice of expressing vectors in terms of their physical compo-
nents, can be removed by the simple expedient of expressing all vectors in
terms of their tensor components. As a consequence of the geometrical
simplification inherent in the tensor method, the operations involved in
formulating problems in unfamiliar curvilinear coordinate systems can be
reduced to routine computer operations. It is this aspect of the tensor
method which makes it so attractive for the types of computer applications

contemplated in this paper.




NOMENCLATURE

M mass of particle

P(1) x

at

R(1) &

t time

xt system coordinates

yi system coordinates

i physical component of force

o) potential function

o gradient of potential function
Supercripts

a,i,d,k indices of contravariance

ANALYSIS

A formulation of the equations of motion of a point mass, which is valid
in all orthogonal curvilinear coordinate systems, may be obtained by expressing
511l relevant vectors in terms of their tensor components, rather than in terms
of their physical components. This formulation gives rise tc the tensor
equations of motion. In order to indicate the method of dealing with mixed
quantities, part of the force system is assumed to be given in the form of
the gradient of a potential function. Such a force assumes the covariant
form (ref. 1). The existence of forces which are known only in terms of
their physical compenents is also assumed. Moreover, since acceleration and
velocity are contravariant vectors, the equations of motion have to be
formulated from a system of covariant, contravariant and physical quantities.
Since compatibility requires that the two sides of every eguation must bal-

ance with respect to their covariant or contravariant properties, 1t is



necessary to convert all the force terms to the contravariant form. When
appropriate conversions are made, the resulting equations are in a form well
suited to non-numeric computer cperations.

Omitting the details of the derivation, the procedure may be described
as follows: let the coordinate transformation equations relating a curvilinear
coordinate system x, to an orthogonal Cartesian system ¥y, be given by

vt = yix2x2x3) 1= 1,2,3 (1)

In terms of the first and second order partial differential coefficients
of y with respect to x, the eguations of motion of a particle of mass M
relative to the curvilinear coordinate system x assume the following form:
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where 1i,J,k,a = 1,2,3 and the summation convention for indices is assumed
to be operative. That is, if a given index occurs twice in any expression,
the expression must be summed with respect to that index. An exception to
this rule occurs when repeated indices are enclosed in parentheses.
Parentheses around an index imply that the summation convention is to be
suspended for that index. This means that for each value of "i," equation (2)
must be summed on a,j, and k. For example, when equation (2) is summed on

a, it appears as follows:



/ 9yi Qy1 oy®  oy" Sy° P N\ aZd
! K}Am N EV I E RN ES I €Y axu)) 2

I 3 + NENENE + NN AT

. (aazyl vt ¥ % B A axd dxk}

3D 3D T 510 5.1 T 5 (5) (D)
(3)

=©+/ayl A T >

The left side of this equation must also be summed on ; and k. When each
of these indices is permitted to tske the values 1,2,3, in turn, eguation (3)

assumes the following form:
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This equation is in a form well suited to routine non-numeric computer opera-
tions. The large number of terms appearing in eguation (4) is due to the
generslity of this eguation, which is applicable to any space of three
dimensions. Moreover, since this equation is applicable to any space of three
dimensions, it may be permanently stored in the computer. Hence, in order to
obtain the eguations of motion in any system of coordinates, the only informa-
tion required is the special form of equation (1) relating that system of
coordinates to the orthogonal Cartesian coordinates yi. For example,
consider a transformation of coordinates specifying the relation between the

i

spherical polar coordinates x~ and the orthogonal Cartesian coordinates yi.

In this case, eguation (1) becomes: See sketch (a).

y! =x! sin x2 cos x3
y2 =x! sin ¥ sin x3
y3 =x! cos x2

sketch (a)
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These coordinate transformation equations were supplied as input to an IBM
TO9k computer, which was programmed for non-numeric operations. When the
cemputer was instructed to perform the operations involved in equation (h),
the following output was obtained in Fortran language.

COMPUTER OUTPUT

The expression input for Y(I) is given below.
X(1)*FMCSIN(X(2) y*FMccos(X(3)$
FOR I = 2
The expression input for Y(I) is given below.
X(1)*FMCSIN(X(2) ) *FMCSIN(X(3))$
FOR I = 3
The expression input for Y(I) is given below.
X(1)*rMccos(x(2))$

Equations of Motion
FOR I = 1
The equation for I = 1 is given below.
M*(P(1) -R(2)*¥2.0%X(1) -R( 3) **2.0%X( 1) *¥FMCSIN(X(2) ) %¥2.0)$
=DPHI(1)+TAU{1)$
FOR I = 2
The equation for I = 2 is given below.
M*(P(2) *x(1)**2.0+R(1) *R(2) *X (1) *2.0-R(3) **2.0%X( 1) #*2,O*XFMCSIN( X( 2) ) *FMCCOS(X(2) ) ) $
=DPHI(2)+TAU(2)*x(1)$
FOR I = 3
The eguation for I = 3 is given below.
M*(P(3)*X(1)**2,OXFMCSIN(X(2) ) %*2.0+R(1) *R(3) *X (1) *FMCSIN( X(2) ) ¥*2,0%2.0+R(2) *R(3) *
X(1)**2.0*FMCSIN(X(2) ) *FMCCOS(X(2) ) *2.0) $

=DPHI(3)+TAU(3)*X (1) *FMCSIN(X(2)) $




JOB ACCOUNTING

COMP/1.0AD EXECUTIVE
TIME TIME TIME
ON MIN. MIN.
950.09 .78 L1

. dxt
R(1) = =%
2,1
p(1) = X
dt

In terms of conventional mathematical symbolism, these equations assume

the following form:

2 2

2 1 2

M[d—i-x .di>—x1<sinxzi>:l=§q)_+—rl
dt2 dt, dt axl

2,2 1 3.2 2
M [(x1) _@__X_z +ooxr & & (x1)® sin x2 cos x2 ﬁ>] = -93)- + XlT2>
dt dt 4t at 2

2 2.3 1 343 2
M |{xt sin x2> X, ox gin2 x2 $& & 2(x1)2 sin x2 cos x2 dx- gi:l
at® dt at at 4t

=(—a,cp+x1 sin x2 Té

Because of its generality, equation (4) is applicable in all coordinate
systems. Therefore, in order to obtain the equations of motion in any other
coordinate system, all that is required is to supply the computer with the
appropriate coordinate transformation equations. As a further illustration of
the procedure involved, consider the equations of motion in a cylindrical
polar system of coordinates. In this case, the coordinate transformation

equations are: see sketch (b).
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¥yl = x1 cos x

y2
¥ =

When these coordinate transformation egquations were used to evaluate the

. 2
x+ sin x°

It

terms of equation (4), the following computer output was obtained.

y3=x3
N |
!
//"Ti\\\
/ | \
oo — y2
~ZX
.ﬂ’//////’
vy )

sketch (b)
COMPUTER OUTPUT
FOR I = 1
The expression input for Y(I) is given below.

X(1)*FMccos(x(2)) $
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FOR I =2
The expression input for Y(I) is given below.

X(1)*FMesIN(X(2)) $

FOR I =3
The expression input for Y(I) is given below.
X(3) $

EQUATIONS OF MOTION
The equation for I = 1 is given below.
M*(P(1)-R(2)**2.0%X(1))$

=DPHI(1)+TAU(1)$

The eguation for I = 2 ig given below.
M¥(P(2) *X(1)**2,0+R(1) *R(2) *X(1)*2.0)$
=DPHI( 2)+TAU(2)*xX(1)$

The equation for I = 3 is given below.
M*P(3)$

=DPHI( 3)+TAU(3)$

JOB ACCOUNTING

COMP/LOAD EXECUTIVE
TIME TIME TIME
ON MIN. MIN.

037.78 1.15 .1h
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Translating these equations from Fortran language to conventional mathematical

symbolism yields the following:

P S B W
at® dt dt dx1

-

(5)

() s e 2
dt dt dt] A2

~v""

M [dEXS_ X L
dt®d 3
Prolate Spheroidal Coordinates
Ancther interesting system of orthogonal curvilinear coordinates are the
prolate spheroidal coordinates. Coordinate surfaces are obtained by rotating
a family of confocal ellipses and hyperbolae about their major axes. Rotation
of these conic sections gives rise to a system of prolate spheroids and hyper-
boloids of two sheets. A family of planes through the axis of rotation
completes the system.ofvorthogonal surfaces. The curvilinear coordinate
systems generated by the curves of intersection of these surfaces are useful
in certain gquantum mechanical problems. (Ref. 2). The transformation egua-
tions relating this system of coordinates to the orthogonal Cartesian system

are as follows:

yl

}’2
yB

In order to obtain the equations of motion relative to a prolate spheroidal

a sinh x* sin x° cos x°

"

a sinh x% sin x° sin x>

a cosh x1 cos x°

system of coordinates, these transformation equations were substituted for
equation (1) in the computer program. Execute time was 1.03 minutes.
Omitting the print-out in Fortran language, the equations of motion were

obtained as follows:
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2 1 2
. 1 , ax? dx
M [ag(sine x2 + sinh? x1) §;§§-+ 2a® sin x? cos x® $XZ X

dt dt 4t

dx?t dax? . dx® ax2

2 L1 1 1 =28 g2 1 1= =

+ a< sinh x* cosh x it at a“ sinh x* cosh x 3t at
!

2 .2 .2 ax> ax>
- nh x1 cosh x1 &4 ____J
a sinT X S At dt

= g sl(sin2 x®+ sinh® x1)71 + iq).

Ayl
2 2 1 5.1
M [a‘g(sin2 x2 + sinh® x1) X _ 42 gin %2 cog x@ &XT dx©
at® dt dt

1.2 2 .2
+ 2a® sinh x¥ cosh xt &X- &XT | 22 Sin x2 cog x2 AX° dxZ
dt 4t at dt

- a® sin %2 cos x2 sinh® x? ng—éﬁi]
' dt dt

LN ®
= a (Jsin2 %2 + sinh® xl) T8 § ——

| i ; a2 axl 4x3
M | a2 sin® x® sinh?® x2 + 28° ain2 ¥2 o4 1 1
L at2 sin® x~ sinh x™ cosh x 3T at

. _
+ 2a° sin x° cos x2 sinh® x1 &X° Q§EJ
dt dt

= a sin x© sinh x! 1@ + —

ox°

Oblate Spheroidal Coordinates
If a family of confocal ellipses and hyperbolae are rotated about their
minor axes, a system of surfaces is generated. These surfaces are the oblate
spheroids and hyperboloids of one sheet (ref. 3). These surfaces, together
with a family of planes through the axis of rotation, constitute a family of
orthogonal surfaces. The curvilinear coordinate systems generated by the
curves of intersection of these surfaces are called oblate spheroidal

coordinates. Oblate spheroids are sometimes referred to as planetary



1=

ellipsoids, because the Earth and the planet Jupiter are approximately of this
form. The transformatiocn eguations relating this system of coordinates to the

orthogonal Cartesian system are as follows:

vyl = g cosh x! sin x® cos x°

y2
}’3

a cosh xt sin x° sin x°

f

2

i

a sinh x1 cos X

These transformation equations take the place of equation (1) in the computer.
In this case, the time reguired to execute the program was 1.63 minutes.
Omitting the print-out in Fortan language, the equations of motion relative
to a system of oblate sphercidal coordinates were obtained in the following

form:

2.1 1.1
M [ag(sinh2 x1 + cos® x2) ¥X_ 4 a2(sinh x! cosh x1) & d&x~
at® at dt

. 1 2 . 2 2
- 282 cos x2 sin x2@ XL X" _ 32 ginh x1 cosh xt &XT dx

dt dt dt dt
.2 1 e 1 a2 2 dxo dx>
a= cosh x1 sinh x1 sin® x at dt]

= a (stinhg x1 + cos® x%) T+ + 52?

2.2 1 g3yl
M [ag(sinhz x1 + cos? x2) X7 4 a2 sin x® cos x@ T &X_
at= dt dt

1 dK2 2 2
+ 282 sinh x% cosh xt &= &XT | 02 oin x2 cos x@ &X° dxT
dt 4t dt dt

o 21 e 2 5 dx® &S
a“= cosh® x1 sin X cos x —E%-—EE]

%

= aJ(sinh2 x1 + cos® x¥?)12 + —
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: 2,3 oy
M Lag cosh® x1 sin® x° d7X" | 282 ginh x! cosh x! sin® x@ && ax
dt dt dt
s 2 w1 as ax® ax>
+ 2a2 cosh? x! sin x2® cos x° -EE'TTE]
op

= a cosh x* sin ¥ 73 + 55
CONCLUSIONS

Digital computerg can be used to perform a wide range of non-numeric
operations if they are properly programmed. Research indicates that these
computers can be used more effectively for this purpose, if all vector
quantities are expressed in terms of their tensor components rather than in
terms of their physical components. It is a consequence of the geocmetrical
simplification inherent in the tensor method, that the operations involved
in formulating problems in unfamiliar curvilinear coordinate systems can be
reduced to routine computer operations. To implement the proposed method, a
digital computer program has been written to perform a variety of non-numeric
operations. In order to illustrate the ideas embodied in this report, the
program has been used to derive the eguations of motion of a point mass in
any coordinate system requested by the user. The results are presented in
Fortran language. However, for the convenience of readers, the Fortran
statements are translated to conventional mathematical symbolism. The
exploitation and extension of these techniques should lead to a substantial
reduction in the man hours required to formulate and process engineering and

scientific problems.
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